ASCRS * ASOA Symposium \& Congress Technicians \& Nurses Program April 17-21, 2015 - San Diego, California

The Post-Refractive Surgery Keratometry Challenge

- Different machines measure different areas of the cornea, producing different results
- Flattened or steepened K's cause invalid assumptions of ELP in our calculations formulas unless Double K modification used
- Using standard keratometry readings results in over-estimation of corneal curvature in the previous myope due to reading a larger area than desired, resulting in a hyperopic surprise (-3.0 D to + 6.0 D)
- In the previous hyperope, results in an underestimation due to reading a smaller area, and a myopic surprise

The Post-Refractive Surgery

 Keratometry Challenge- Central cornea flattened for myopic correction steepened for hyperopic correction
- Changes shape of cornea and refractive index of stroma unless RK
- Standard formulas using anterior corneal measurements assume a predictable relationship between front and back surfaces
- After LASIK, only the anterior surface is reshaped

Warn the Patient!

- These patients are at a higher risk of an imperfect result which could require yet another procedure for desired target refraction, i.e. more refractive surgery, an IOL exchange, a piggyback lens
- Tell them to expect two procedures from the beginning?

Clinical History Method

Koch, et al AJO 1989; 108:676-82

- Previously considered "Gold Standard", but now one of least favored methods
- Requires records, no sign of cataract at time of refractive surgery and post-op
- Need three numbers:

1. Pre-Op MR (sph eq)
2. Pre-Op K's (average)
3. Post-Op MR (sph eq)

Clinical History Method
Koch, et al AJO 1989; 108:676-82

- Determine how much correction took place, then
$K=$ Pre-Op Avg. K - change in MR

Clinical History Method
 Koch, et al AJO 1989; 108:676-82

For example:

- Average K pre-LASIK = 45.75 D
- - 5.00 D myope pre-LASIK
- - 0.25 D myope post-LASIK
- Change in MR = 4.75 D
- $K=45.75 D-(4.75 D)=$ 41.00 D
 4.75

What If's

- What if the patient had refractive surgery to correct hyperopia instead of myopia?
- ADD the amount of correction from original K rather than subtract due to corneal steepening

What If's

- What if patient had enhancements or multiple types of procedures?
- The stable post-op refraction is the spherical equivalent after LAST PROCEDURE

Clinical History Method

Koch, et al AJO 1989; 108:676-82

For example:

- Average K pre-Lasik = 42.75 D
- + 3.50 D hyperope pre-Lasik
- - 0.25 D myope post-Lasik
- Change in MR = 3.75 D
- $K=42.75 D+(3.75 D)=46.50 D$

Shammas PL
 For Myopic LASIK
 Shammas, et al AJO 2003; 136:426-32

- Measure K's post-op (IOL Master or Sim K preferred), average, then

$$
K=1.14 \text { (K post-op) - } 6.8
$$

- In his study, 93.3\% within 1D of target

Shammas PHL
 For Hyperopic LASIK

Shammas, et al J Cataract Ref Surg 2013; 39:739-744

- Measure K's post-op, average, and adjust with formula:
$K_{c}=1.0457\left(K_{\text {post.op }}\right)-1.9538$

Masket Method

Masket S, Masket SE. JCRS 2006; 32:430-434

- Best performance in some recent studies for PRK and LASIK patients (not RK!)
- Must know amount of correction from history (LSE = spherical equivalent of change after laser vision correction)

$$
\text { IOL Adjustment = LSE x (-.326) + } 0.101
$$

Masket Formula Examples

Prior Myopia (use SRK/T):

- Formula yields +16.0 D
- LSE = -6.00 D
- $-6.0 \times(-0.326)+0.101=+2.057$
- +16.0 + 2.0 = +18.0 D Final IOL Power

Masket Formula Examples
Prior Myopia (use SRK/T):
- Formula yields +16.0 D
- LSE $=-6.00 \mathrm{D}$
- $-6.0 \times(-0.326)+0.101=+2.057$
$-+16.0+2.0=+18.0$ D Final IOL Power

Wang-Koch-Maloney Method

Wang, Booth, Koch. Ophthalmol 2004; 111(10):1825-1831

For myopic LASIK patients:

- Obtain topography post-op, then

$$
K=1.114(C c p)-6.1
$$

Where Ccp is the central corneal power with cursor at the exact center of the Axial Map Recommend using Atlas topographer

Masket Method

Masket S, Masket SE. JCRS 2006; 32:430-434

- Adjust final power, not measurements
- Used IOLM K's and Biometry for study
- May use Sim K and immersion instead
- No need to determine corneal power
- Mean outcome -0.15 D, 28 out of 30 eyes within 0.5 D of target

Masket Formula Examples

Prior Hyperopia (use Hoffer Q):

- Formula yields +22.0 D
- LSE = +3.0 D
- +3.0 X (-0.326) $+0.101=-0.877$
- +22.0 - 1.0 = +21.0 D Final IOL Power

Modified Masket Method

Warren Hill's data produced a slightly different regression formula when working to validate the Masket Method:
$I O L$ Adjustment $=$ LSE $\times(-0.4385)+0.0295$

Haigis L

- For both myopic and hyperopic LASIK on recent versions of IOL Master
- Older versions have neither
- Semi-older versions have myopic only
- Use IOLM or immersion biometry, but IOLM K's only!

Modified Masket Method

Calculated IOL power = +15.26 D
Stable SE correction after LASIK = -5.0 D
Masket Method:
(-5.0 X -0.326) $+0.101=+1.73 \mathrm{D}$, so
+15.26 D + $1.73 \mathrm{D}=+16.99 \mathrm{D}$
Modified Masket Method:
(-5.0 X -0.4385) $+0.0295=+2.22 \mathrm{D}$, so
$+15.26 D+2.22 D=+17.48 D$

Haigis L

- For myopia, Haigis L has a correction function for IOL Master keratometry plus a correction factor for the ACD change (0.5 mm steeper since part of cornea removed) due to ablation - no history required
- For hyperopia, since no ablation, has correction function for K's only

Aramberri Double K
 Aramberri. JCRS 2003; 29(11):2063-2068

- Formulas actually use K's twice: once regarding amount of power of cornea to bend light, the other to help predict ELP
- With double-K modification, an avg K is inserted into the formula where ELP is predicted, adjusted K where corneal power is used
- Axis II and Sonomed have double K

Holladay II Double K Correction

- Check the box in Holladay II for "Prev RK, PRK, LASIK" and it automatically puts avg K (43.9 D unless you provide historical information, then will use that) in ELP prediction

Prior Myopic LASIK/PRK Previous Calculator Version

Prior Myopic LASIK/PRK

 Previous Calculator Version- Research showed repeatedly that methods in second and third columns perform better than those of the first column
- Calculator had average of $2^{\text {nd }}$ and $3^{r d}$ columns only above average from entire calculator

Prior Myopic LASIK/PRK Previous Calculator Version

- Typically first column much stronger than second and third

Prior Myopic LASIK/PRK New Version

- Best results from Masket, Shammas, Haigis-L, and Wang-Koch-Maloney, Potvin-Hill, Barrett
- Completely eliminated first column!

Potvin-Hill Pentacam Method
 Potvin, R and Hill, W. J Cat Refract Surg 2015: 41:339-347

- For myopic LASIK only
- Directly determines the corneal power by measuring both the anterior and posterior surfaces with the Pentacam rotating Scheimpflug camera
- Best results were found to be from using the true net power measurements in the 4.0 mm zone centered on the corneal apex (TNP_Apex_Zone_40), used in Shammas formula

Potvin-Hill Pentacam Method
 Potvin, R and Hill, W. J Cat Refract Surg 2015: 41:339-347

- Produced calcs similar to those obtained from existing formulas on the ASCRS website

Barrett True K Method

Barrett GD. True-K formula: New Approach to biometry after LASIK. Presented at ASCRS 2009

- For myopic LASIK, hyperopic LASIK, and RK
- Based on Barrett Universal II formula
- Calculates a modified K value for postrefractive patients
- Requires optical Ks as measured and the preand post-refractive surgery refractions for maximum accuracy
- Can also be run when no history available

OCT-Based Method

Huang D et al. Transactions of the American Ophthalmological Society, 2013: 111:57-68

- For myopic LASIK, hyperopic LASIK, and RK
- Net corneal power, posterior corneal power, and central corneal thickness are obtained from RTVue or RTVue-XR (Optovue Inc)
- Axial length and ACD from IOL Master
- Recommended to perform three OCT scans and use the median net and posterior corneal power

Prior Hyperopic LASIKIPRK

RK Patients

RK Patients

- Aim for - 0.75 or -1.00 in post-RK patients because of hyperopic shift over several years
- Don't want them to drift into hyperopia drift into plano instead
- After RK, many patients have a hyperopic surprise that will settle out over time
- Do NOT do IOL exchange until after 2 stable refractions on 2 different visits at least 2 months out!

Disadvantages of ASCRS Calculator

- No power ranges from which to choose
- Can only run for one IOL on the page, so must run multiple times for different IOLs

Emory Protocol for

 Post-Refractive Patients

- Now docs have all four lenses calculated on the page
- Now they have power ranges from which to choose
- Holladay II may differ a little from ASCRS calculator of same method because more of the eye anatomy being considered than Holladay I formula being used in calculator

Emory Protocol for Myopic LASIK Patients

For Holladay II:

- Manually calculate Ks by Shammas PL
- IOLM K's: 40.66/41.26
- Average those Ks (add them together, then divide by 2)
- Avg K = 40.96
- Shammas PL = 1.14 (40.96) - 6.8
- Adj K for calcs = 39.89

Emory Protocol for Post-Refractive Patients

- Run ASCRS Calculator, but also:
- Adjust K's with Shammas Method manually and enter into Holladay II formula as "Surgeon entered adjusted K"
- Check box that patient had prior refractive surgery so it functions as a double K formula!

Emory Protocol for Myopic LASIK Patients

- AEL: 26.46 OD by immersion
- IOLM K's: 40.66/41.26 OD
- Targeted plano OD

Emory Protocol for Myopic LASIK Patients

- Adjusted K of 39.89 entered into H II
- Checked box that patient had prior refractive surgery
- IOL Power = 17.50 D
- Post-Op outcome:
$-0.75+0.50 \times 176=20 / 20$

Emory Protocol for Hyperopic LASIK Patients

- AEL: 22.26 OS by optical
- IOLM K's: 46.18/47.02 OS
- Targeted plano OS

1OL Powers Calcutated Using Double K Holladay 1 Formula

Emory Protocol for Hyperopic LASIK Patients

- Adjusted K of 46.77 entered into H II
- Checked box that patient had prior refractive surgery
- IOL Power = 20.0 D
- Post-Op outcome:
plano $=20 / 20$

Emory Protocol for RK Patients

- Run ASCRS Calculator, but also:
- Just use average optical K from IOLM or LS (which formula does automatically)
- Check box that patient had prior refractive surgery

Emory Protocol for RK Patients

- AEL: 22.99 OD, 22.79 OS
- IOLM K's: 43.55/44.35 OD
44.41/44.88 OS
- Target -0.75 OU

OS

Emory Protocol for RK Patients

For Holladay II:

- Enter as normal so program will average
- IOLM K's OD: 43.55/44.35 (avg 43.95)
- IOLM K's OS: 44.41/44.88 (avg 44.65)
- Check box that patient had prior refr sx
- IOL Power = 22.5 D OU
- Post-Op outcome:

OD: $-1.00+1.00 \times 175=20 / 20$
OS: $-0.50=20 / 15-1$

Patient Unsure- Patient had LAsIK ou, wasn't sure what type					
- Patient had LASIK OU, wasn't sure what type - Asked if she was nearsighted or farsighted beforehand - Her answer was "both"					
OD OS					
!ex					
\pm			momo	8motr	
				,	

Topography Myopic LASIK

- Flat zone centrally

CAUTION!!!

- ALL methods require good data in!
- If measurements are not accurate, none of the methods work!
- Must use ultrasound for long eyes!

Patient Unsure

- Patient had LASIK OS only for monovision purposes
- Was plano OU beforehand
- Would that be myopic or hyperopic LASIK?

Topography Hyperopic LASIK

- Steep zone centrally

We must first get the correct axial length!

- Eyes $\mathbf{2 5 . 0}$ mm or longer: Optical tends to measure long eyes too long hyperopic surprises reported - do immersion and B-scan biometry to verify

Optimizing Axial Length in Long Eyes

- The problem with using an optimization equation is that sometimes optical gets it right!
- Adjusting a measurement that didn't need adjusting will still lead to a post-op surprise
- The best way to measure the high myope is with ultrasound so you know it is correct

Optimizing Axial Length in Long Eyes
Wang, et al, J Cataract Refract Surg 2011; 37:2018-2027

- Holladay I formula:
$0.8814 \times \operatorname{AL}(I O L M)+2.8701$ = Adjusted AL
- Haigis formula:
$0.9621 \times A L($ IOLM $)+0.6763=$ Adjusted $A L$
- SRK/T formula:
$0.8981 \times \operatorname{AL}$ (IOLM) + 2.5637 = Adjusted AL
- Hoffer Q formula:
$0.8776 \times$ AL(IOLM) + 2.9269 = Adjusted AL

Immersion Technique

- Probe immersed in shell of saline
- Most accurate/no corneal compression (0.015-0.05 mm depending on manufacturer)
- The method to which optical was calibrated in its development

Why High Myopes are Harder to Measure

- The eye is misshapen, oval or elongated rather than round
- Macula on a "slope"
- Perpendicularity impossible

If you don't see the cornea, you aren't using enough ge!!

Conclusion

- Records will continue to be difficult to obtain, research emphasis being placed on methods that don't require history
- Keep up with the latest methods
- Use ASCRS calculator
- Know which methods are most reliable
- Don't forget to get ultrasound measurements on the long eyes!
- Do NOT measure the cornea after an eye exam!
- ALL methods require good data in!

