
HOFFER IOL POWER COURSE: 40 YEARS ASCRS 2015

Kenneth J. Hoffer, M.D. 411 Lincoln Blvd, Santa Monica. CA 90402 310-451-2020 (FAX 310-395-5947)

"IOL POWER" book by Slack

- A. Ossoinig cups (#303-82) Order: Hansen www.HansenLab.com 319-338-1285 \$36@ 16-18-20-22-24 mm i. Prager Shell: Order from: ESI, Inc. www.ESI.com 763-473-2533 tab@eyesurgin.com
- B. Direct read out of oscilloscope is optimal compared to "black box" readouts without scan. PO Rx affected by AL
- C. Axiality determined by obtaining simultaneous maximum corneal and retinal spikes.
- D. <u>Always</u> measure the axial length of both eyes [Standard of Care Issue].
- Consider STAPHYLOMA in problem case with AL >25 mm, need B-scan or Optical biometer. E.

AL	ERROR
20 mm =	= 3.75 D/mm
23.5 mm :	= 2.35 D/mm
30 mm =	= 1.75 D/mm

F. ULTRASOUND SPEED

In 1974,⁸ I computed the average US speed of a Phakic eye = 1555 m/sec and an Aphakic eye = 1534 m/sec. BUT AL affects this: e.g. 20 mm Phakic = 1560 m/sec & 30 mm Phakic = 1550 m/sec. (Aphakic NOT affected by AL) <u>WHY?</u> Short eyes are made up of smaller % of fluid axially (short AC, shorter vitreous, thicker lens), .: Velocity faster.

- 1. How to correct for this: PHAKIC EYE: Measure all eyes at 1532 m/sec and add to it a CALF factor of + 0.37 mm.
 - a. APHAKIC EYE: Measure at 1532 m/sec and only add + 0.05 mm
 - b. PSEUDOPHAKIC Eye: Measure at 1532 m/sec and add CALF of:
 - $\underline{PMMA \ [+ 0.424^{*}(T_{L}) + 0.037]} \quad \underline{Silicone \ [- 0.563^{*}(T_{L}) + 0.037]} \quad \underline{Acrylic \ [+ 0.243^{*}(T_{L}) + 0.037]} \quad T_{L} = IOL \ Thickness$
 - OR use Average Velocities for 23.5 mm eye: PMMA 1556 m/sec Silicone 1487 m/sec Acrylic 1549 m/sec C.
 - d. Piggyback Lens Eye: AL = $AL_{1532} + T_1 * (1-1532/V_1) + T_2 * (1-1532/V_2) + 0.037$ Where T_1 and V_1 are the thickness and velocity of one IOL and T_2 and V_2 are the thickness and velocity of the other.
- 2. If AL not measured at 1532 m/sec, AL can be converted by formula: Vmeas= Velocity you used, Vcorrect = correct or new Velocity

$$AL_{corrected} = AL_{measured} \times \frac{V_{correct}}{V_{measured}}$$

Basically divide old AL by old V and multiply by new V.

- 3. Scleral Buckle after RD: Use AL-1 mm for ACD prediction and AL for IOL power calculation, "Double-AL"
- 4. SILICONE OIL filled Eye
- FIRST PROBLEM: Almost impossible to measure with Ultrasound: BEST: USE OPTICAL BIOMETER. a.
- SECOND PROBLEM: Refractive index of silicone acts like a minus lens was placed in the vitreous and will b. cause the eye to become hyperopic by 2-3 D (Plano-convex IOL) or 3-6 D (Biconvex IOL) [Concave IOL best]. Therefore the IOL power must be increased if silicone will be left in.
- C. Due to 1 & 2 above. I recommend waiting and performing secondary IOL using Holladay Refraction Formula.
- Advise all retinal surgeons to routinely perform AL measurement prior to placing Silicone. d.

G. OPTICAL BIOMETERS

IOLMaster 1999 Lenstar 2009 **Proven Equal** Aladdin 2013 Proven Equal Nidek AL-Scan 2013 TBA Galilei G-6 2013 TBA

II. CORNEAL POWER [K]

- For every 1.00 D change in IOL, get 0.87 D change in RX.
- A. The manual keratometer should be standardized often. This is done with steel calibration balls from manufacturer.
- B. K reading errors = diopter for diopter error in IOL power. Hard CL's must be kept out > 2 weeks (Medico-legal)
- C. Average K reading is always used; Cylinder is ignored. It has NO effect on IOL power
- D. Ignore surgical change in corneal power unless a study of your cases reveals a consistent trend.
- E. PK: Do secondary IOL after corneal transplant heals when the true K reading is able to be obtained. Scheimpflug Cameras: Oculus Pentacam, Ziemer Galilei, Sirius (Italy)
- G. Refractive Surgery Eyes
 - 1. Over 30 methods to calculate K or fudge the IOL power
 - 2. ARAMBERRI DOUBLE-K METHOD: Use Preop K to predict the ACD and PO calculated K for the IOL power.
 - 3. IANCHULEV OR REFRACTION METHOD:]} WaveTec ORA microscope system proven accurate

There are over 30 methods to estimate K or fudge IOL power for these eyes

DOWNLOAD FREE HOFFER/SAVINI LASIK TOOL at www.IOLPowerClub.org Click Hoffer/Savini Tool

HOFFER IOL POWER COURSE: 40 YEARS ASCRS 2015

Kenneth J. Hoffer, M.D. 411 Lincoln Blvd, Santa Monica, CA 90402 310-451-2020 (FAX 310-395-5947)

III. ANTERIOR CHAMBER DEPTH

- All formulas require an AC depth (ACD) = Corneal thick + Endo to IOL surf dist + 10% T_L (PI-cvx) or 50% T_L (Bicvx)] Α.
- ACD (ELP) is not the ultrasound pre-op anatomical AC depth reading; it is the axial position of the IOL. В.
- C. ACD is individual to each IOL style and can be predicted by the formula or is the average of a PO series.
- D. The A constant in SRK formulas and the Surgeon Factor (SF) in the Holladay formula are used to predict ELP.
- Ε. Hoffer Q formula uses pACD and the Q formula to develop the predicted ELP for an individual eve.
- F. Decrease IOL 1.00 D when shifting from bag to sulcus placement (0.50 to 1.50 D depending on power of IOL).
- G. Expect ~ 1.25 D/mm shift in IOL Position.

PERSONALIZATION IS IMPORTANT

IV. FORMULAS

A. Historical Theoretic: Fyodorov (1967) Colenbrander (1972) Hoffer[®] (1974) R Binkhorst (1975) B. Historical Regression: SRK[®] [1980) SRK[®] II [1988)

"SRK and SRK II formulas are outdated and are no longer recommended; use the SRK/T for IOL power." John Retzlaff, M.D. (coauthor of SRK); 1990. C. Modern Theoretic:

- 1. Holladay[®] [1988]: Basic theoretic formula which calculates the corneal height (1st used by Olsen) added to the corneal thickness (0.56) and an IOL/surgeon specific constant (the SF), to calculate the ELP.
- 2. <u>SRK/T</u>[®] [1990]: Basic theoretic formula using Olsen method for predicting ACD.

3. Hoffer[®] Q⁷ [1992]: Basic Hoffer formula [1974]. Uses Q formula to predict ELP which is dependent upon AL and K, using a personalized ACD. As accurate as the Holladay 1 formula and superior in short eyes.

4. Holladay[®] 2 [1996]: [Unpublished] Intended to improve short eye calculation. Requires: Rx, Age, CD, Pre ACD, LT. My study¹¹ 317 eyes: Less accurate in eyes 22.0-26.0 mm, equal to Hoffer Q (<22 mm). ? better in eves <18 mm.

5. <u>Haigis[®]</u> [2000] Uses a₀, a₁, a₂ for ELP. Optimize only a₀ = Hoffer Q. Better if optimize all 3, but need 350 PO eves. 6. <u>Hoffer[®] H¹¹ [2004]</u> Holladay Log Factors of AL, K, CD, ACD, LT and Age: BEST in <22, 24.5-26, Highest % ±0.13D. 7. Olsen [2006] Ray-tracing using new C-factor.

8. Hoffer[®] H-5 [2013] Holladay 2/Hoffer H upgraded to 5th Generation by taking into account race and gender.

V. COMPUTER DATABASE PROGRAMS

1. Holladay[®] IOL Consultant. Uses Double-K only for Holladay 2 formula, not Hoffer Q Holladay 1 or SRK/T. 2. Haigis Website 3. Olsen PhacoOptics Olsen C-constant Ray Tracing

VI. BIFOCAL IOL POWER

AL has no effect on Add power, K has minimal but ACD has real effect on add power⁵⁻⁶.

VII. CLINICAL RULES

- 1. Be sure Surgeon knows more about lens calculation than the Technician.
- 2. Be wary of transcription errors, e.g. AL and K readings. Calculate an average K quickly and use it from then on.
- 3. If you are accurate, aim for emmetropia (I have for 35 years without regret). Don't make all patients -1.5 D myopes. Ask the patient what they want. If they want other than your recommendation have them sign for it in the chart.
- 4. IOL power for a monocular cataract in a bilateral high myope: carefully discuss the options of monocular emmetropia and the necessity of wearing a contact lens on the other eye versus lifelong myopia.
- 5. 7 D error at 3 days is 7 D at 3 yrs: DO IOL EXCHANGE QUICKLY! USE McReynolds Analyzer 217-223-1111

,		
Optical Biometers • Work in 90% of eyes. • Setup Must Have IR set to 1.3375 or Hoffer Q NG • Work in Silicone Oil eyes	HOFFER Q Formulas <24.5 mm (80%); HOLLADAY Formula 24.5 - 26.0 mm (15%) SRK-T Formula >26 mm (5%) HAIGIS & Olsen Formulas Also good <u>NEVER USE SRK I or II</u> HOLLADAY II OK for <22	IF YOU NEED HELP FOR DIFFICULT CASES E-mail to: KHofferMD@AOL.com
Bibliography:		-
MANY PAPERS & CHAPTERS CAN BE DOWNLOADED FROM JCRS & Researchgate.com and IOLpowerclub.com. . Hoffer KJ Mathematics and Computers in Intraocular Lens Calculation. Amer Intra-Ocular Implant Soc J 1975; 1(1):1 Preoperative Evaluation of the Cataractous Patient. Survey of Ophthalmology 1984; 29:55-69 Axial dimension of the human cataractous lens. Arch Ophthalmol 1993; 111:914-918; Errata 1993; 111:1626 Lens Power Calculation for Multifocal IOL's, (Chapter 17) <u>Current Concepts of Multifocal Intraocular Lenses</u> , Maxwell A (Ed), Slack, Inc, 1991, pp. 193-208. . Holladay JT & Hoffer KJ Intraocular lens power calculations for multifocal intraocular lenses. <i>Am J of Ophthalmol.</i> 1992; 114:405-408. . Holffer KJ The Hoffer Q formula: a comparison of theoretic and regression formulas. J Cat Refract Surg 1993; 19:700-712; Errata 1994; 20:677 and JCRS 2007:33:2-3		
 Ultrasound velocities for a Holladay JT Standardizing constants for J Cat Refract Surg 1997; Hoffer KJ Clinical results using the H 	ixial length measurement. J Cat Refract Surg 1994; 20: or ultrasonic biometry, keratometry, and intraocular lens	554-562. power calculation.

- Ultrasound axial length measurement in biphakic eyes. JCRS 2003; 29:961-5. Hoffer H Formula. Poster #207 AAO Mtg New Orleans OCT 26-27, 2004
- 12.
 - Hoffer H-5 Formula: Presented at AAO 2013 & 2014.

1. 2. 3. 4.

5. 6.

7.

9

10.